
1

 Sisoft Technologies Pvt Ltd

SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram, Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

www.sisoft.in

http://www.sisoft.in/

• Sometimes we have large volume of data to store. In such
situation we use some devices such as floppy disk or hard disk
to store the data. The data store in these devices using the
concept of files.

• A file is a collection of related data which is stored in a
particular area on the disk. In this data stored permanently .

• To read and write operations performed on files using
fstream.h

• At lowest level , file is interpreated as a stream of bytes.

2 www.sisoft.in

What is Stream :

 A streams acts as an interface between the programs
and the files.

 The stream that supplies data to the program is
known as input stream , and the stream that receives
data from the program is known as output stream.

 In other words, the input stream extract (reads) data
from the file and the putput stream inserts (or
writes)data to the file.

3 www.sisoft.in

Stream classes for file operations

www.sisoft.in 4

Class Contents

filebuf Purpose to set file buffers to read & write.
It contains open() and close() methods.

fstreambase Ot serves as a base for fstream, ifstream,
fstream class.

ifstream Provides input operations. It contains
get(), getline(), read() , seekg(), tellg()
from istream.

ofstream Provides outputoperations. It contains
put(), write() , seekp(), tellp() from
ostream.

fstream Inherits all the functions from istream &
ostream classes through iostream.

5 www.sisoft.in

Types of Files in C++

www.sisoft.in 6

 There are two types of files in c++

1) Text Files 2) Binary Files

Note : binary files are faster and easier for program to read &
write than text files.

7 www.sisoft.in

Text Files Binary Files

Text files stores the data in
ASCII information.

Contains information in same
format in which information is
stored in the memory.

Text files contains lines of text
and each of the lines have an
end-of-line marker appended
automatically.

Contains text but they cannot
be broken down into a
number of lines.

Opening a File :
A file can be opened in two ways:

1) Using the constructor of the stream class.

2) using the member function open() of the class.

 First way is useful when we use only one file in the stream.

 Second way is useful when we want to manage multiple files
using one stream.

www.sisoft.in 8

Closing a File
• When input and output stream objects go out of scope,

connections with files are closed automatically.

• A file can be closed explicitly, using member function close()
function.

www.sisoft.in 9

Opening File using Constructor

 In this we can open a file by supplying the file name to the

constructor of file stream.

www.sisoft.in 10

Program

#include<fstream.h>

Void main()

{

Ofstream fout(“Myfile.txt”);

Char *marks;

Cout<<enter the value\n”;

Cin>>marks;

Fout<<marks;

Cout<<“Data has been stored in the file\n”;

Fout.close();

Getch();

}

www.sisoft.in 11

Output

Enter the value :

23

Data has been stored in the file.

Example

int main()

{

char name[30];

ofstream o = (“item.txt”);

cout<<“enter the item\n”;

cin>>name;

o<<name;

o.close();

ifstream i= (“item.txt”);

i>>name;

cout<<“item :”<<name<<“\n”;

i.close();

}

www.sisoft.in 12

Output

Enter the item

Pen

Item:Pen

Multiple files open using open() function :

 As we already stated, the function open() can be used to open
multiple files that using same stream .

 For ex: If we want to process a set of files sequentially then we
create a single stream object and use it to open each file in turn.

Syntax: file_stream_class stream_object

stream _object . open (“ file_name ”);

www.sisoft.in 13

General form of open() function is:

Stream_object . Open (“ file_name “ , mode);

 Where second argument mode called file mode parameter , which
specifies the purpose for which the file is opened.

 Where ios::in (Open for reading only) and

 ios::out (Open for writing only) are default mode.

The other modes describe in following table:

www.sisoft.in 14

Example: ofstream of;

 of.open(“Hello”); // Connect to Hello File

 of.close();

 …….

 …….

 of.open(“Hi”); // Connect to Hi File

 of.close();

 …….

 …….

 of.open(“Bye”); // Connect to Bye File

 of.clsoe();

www.sisoft.in 15

Program
#include<fstream.h>

Void main()

{

Ofstream o;

o.open(“country.txt”);

O<<“Hello\n”;

O<<“hi”;

o.close();

o.open(“capital.txt”);

O<<“Hi\n”;

O<<“Bye”;

o.close();

Char line[n];

Ifstream I;

i.open(“country.txt”);

Cout<<“Contents are\n”);

www.sisoft.in 16

Output

Contents are:

Hello

Hi

Contents are:

Hi

Bye

While(i)

{

i.getline(line, n);

Cout<<line;

}

i.close();

i.open(“capital.txt”);

Cout<<“Contents are\n”);

While(i)

{

i.getline(line, n);

Cout<<line;

}

i.close();

Getch();

}

File Modes

www.sisoft.in 17

Parameter Meaning

Ios:app Append to-end-of-file

Ios::ate Go to end-of-file on opening

Ios::binary Binary File

Ios::in Open file for reading only

Ios::nocreate Open fails if the file does not exist

Ios:noreplace Open files if the file already exists

Ios::out Open file for writing only

Ios:;trunc Delete the contents of the file if it exists

www.sisoft.in 18

File Mode Parameters

Detecting end-of-file :
C++ provides a special function, eof(), that returns nonzero

(meaning TRUE) when there are no more data to be read from
an input file stream, and zero (meaning FALSE) otherwise.
eof() is a member function of ios class. Detecting end-of-file
condition is necessary for preventing any further attempt to read
data from the file.

Syntax: int eof();

It returns non zero when the end of file reached , otherwise it returns
zero.

We use following statement in program to detect end-of-file condition

while(fin)

www.sisoft.in 19

Example

int main()

{

 FILE *fp = fopen("test.txt", "r");

 int ch = getc(fp);

 while (ch != EOF)

 {

 putchar(ch); /* display contents of file on screen */

 ch = getc(fp);

 }

 if (ch.eof(fp))

 printf("\n End of file reached.");

 else

 printf("\n Something went wrong.");

 fclose(fp);

 getchar();

 return 0;

}

www.sisoft.in 20

File Pointers in C++

www.sisoft.in 21

Each file has two associated pointers known as the file pointers.

1) Input pointer (get pointer)

2) Output pointer (put pointer)

We can use these pointers to move through the files while reading or
writing.

The input pointer is used for reading the contents of the given file
location.

The output pointer is used for writing to a given fiel location.

www.sisoft.in 22

Default Actions:
 When we open a file in read-only mode, the input pointer is

automatically set at the beginning so that user can read from the
start.

 Similarly when we open a file in write-only mode, the existing
contents are deleted and the output pointer is set at the beginning.
So that user can write from the beginning.

 If user want to add more data to an existing file , the file is opened
in append mode. This moves the output pointer to the end of the
file

www.sisoft.in 23

Functions for manipulate File Pointer:
The function for random access the data in the file are :

www.sisoft.in 24

Function Description

Seekg() Moves get pointer (input) to a specified location.

Seekp() Moves put pointer (output) to a specified
location.

Tellg() Gives the current position of the get pointer.

Tellp() Gives the current position of the put pointer.

Seekg() & Seekp() :
 As we know seekg() is used to move a file pointer to desired

location.

 seekg() and seekp() can also be used with two arguments as
follows:

Seekg(offset , refposition);

Seekp(offset , refposition);

Here offset represent the no of bytes the file pointer to be moved
from the location specified by the parameter refposition.

The refposition takes one of the three constants defined in the ios
class (ios :: beg , ios :: cur , ios :: end).

 www.sisoft.in 25

Pointer offset calls :
The function for random access the data in the file are :

www.sisoft.in 26

Seek call Action

Seekg(0, ios :: beg) Go to start.

Seekg(0, ios :: cur) Stay at the current position.

Seekg(0, ios :: end) Go to the end of Line.

Seekg(m, ios :: beg) Move to (m+1)th byte in the file.

Seekg(m, ios :: cur) Go forward by m byte from the current position.

Seekg(-m, ios :: cur) Go backward by m byte from the current position.

Seekg(-m, ios :: end) Go backward by m byte from the end.

Example:

 fin.seekg(30); // will move the get_pointer (in ifstream) to byte number 30 in the

file

 fout.seekp(30); // will move the put_pointer (in ofstream) to byte number 30 in the
file

 When seekg() or seekp() function is used according to Form 2, then it moves the

get_pointer or put_pointer to a position relative to the current position, following
the definition of seek_dir. Since, seek_dir is an enumeration defined in the header
file iostream.h, that has the following values:

 ios::beg, // refers to the beginning of the file ios::cur, // refers to the current

position in the file
 ios::end} // refers to the end of the file

 fin.seekg(30, ios::beg); // go to byte no. 30 from beginning of file linked with fin
 fin.seekg(-2, ios::cur); // back up 2 bytes from the current position of get pointer
 fin.seekg(0, ios::end); // go to the end of the file
 fin.seekg(-4, ios::end); // backup 4 bytes from the end of the file

 www.sisoft.in 27

Sequential Input and Output
Operations

www.sisoft.in 28

The file stream classes support a number of member function to perform
Input and Output operations on files.

 1) put() and get() functions handle single character at a ime.

 2) write() and read() function read and write blocks of binary data.

www.sisoft.in 29

Write() and read () Functions :
Write () and Read() functions handle the data in binary form. This

means that the values are stored in the disk file in the same format
in which they are stored in the internal memory.

Following figure shows how an int value 2594 is stored in the binary
and character formats.

Dig on C++ book

An int takes 2 bytes to store its value in the binary form, irrespective of
its size. But a 4digit int will take 4 bytes to store it in character form

www.sisoft.in 30

Advantage of Binary Files :

 The binary format is more accurate for storing the numbers as they
are stored in the exact internal representation. There are no
conversions while saving the data and therefore saving is much
fater.

 The binary input & output functions takes following form:

 Infile.read ((char *) & V , sizeof(V));

 Infile.write ((char *) & V , sizeof(V));

Here first argument is the address of Variable V & second argument is
the length of that variable in bytes.

The address of that variable must be cast to type char* (i.e.pointr to
charactre type)

www.sisoft.in 31

Writing to Binary File
struct Person

 {

 char name[50];

 int age;

 char phone[24];

 };

int main()

 {

Person me = {"Robert", 28, "364-2534"};

Person book[30];

 int x = 123;

 double fx = 34.54;

ofstream outfile; outfile.open("junk.dat", ios::binary | ios::out);

 outfile.write(&x, sizeof(int)); // sizeof can take a type

outfile.write(&fx, sizeof(fx)); // or it can take a variable name

www.sisoft.in 32

outfile.write(&me, sizeof(me));
outfile.write(book, 30*sizeof(Person)) ;
outfile.close();
}

Reading from Binary File
int main ()

 {

Int size;

char * memblock;

ifstream file ("example.bin", ios::in|ios::binary|ios::ate);

if (file.is_open())

{

 size = file.tellg();

 memblock = new char [size];

 file.seekg (0, ios::beg);

 file.read (memblock, size);

file.close();

cout << "the entire file content is in memory";

delete[] memblock;

}

 else

 cout << "Unable to open file";

return 0;

}
www.sisoft.in 33

OutPut:

"the entire file content is in
memory

